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Why This Session?

Stand up if you...

Consider yourself to be a data analyst, frequently work with
quantitative data in your job or are really just interested in
statistics.

Work with quantitative data some...not as much as a data analyst
per say....and you would like to learn a new method.

Hate statistics with a passion but you're in this session because
working with quantitative data is a necessary evil in program
evaluation. (It's okay...we’ve all felt this way at some point)

Other reasons?




Session Outline

Overview of Classification Tree Analysis (CTA)
Walk-through of performing a CTA
Group Activity: Presenting the results of a CTA to your client

Wrap-up/resources for continued learning




What is Classification Tree Analysis?

Identifies a set of characteristics that best
differentiates individuals based on a
categorical outcome variable

Generates a multi-level tree diagram

The order in which variables appear in the
tree matters!

Creates exhaustive and mutually
exclusive subgroups of individuals

Total Sample
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Data Considerations

Do you have an outcome variable that can be measured
categorically?

Is there variation in the outcome variable among your sample?

Do you have variables that are theoretically related to your
outcome variable?

What is your sample size?

Is it possible to measure your variables so the right-hand side
variables precede the outcome variable?




What Types of Evaluation
Questions Can CTA Answer?

What factors best differentiate treatment attenders
from non-attenders?

What characteristics predict health improvement from baseline
to follow-up?

Others?




What software can | use?

aSsas.
Sas e

Data Mining Using
SAS Enterprise Miner




Validation and CTA

“Twitter and Facebook can’t predict
the election, but they did predict
what yvyou're going to have for
Ilunch: a tuna salad sandwich.
You're having the wrong sandwich.”




Validation Approaches

1. Hold-out sample
80% training sample
20% testing sample

2. You can also add in a
validation sample

3. K-fold cross validation

K=5 or k=10 is typically used Validation




Interpreting the Output of CTA
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Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003). Classification and regression tree analysis in public health: methodological review

and comparison with logistic regression. Annals of behavioral medicine, 26(3), 172-181.



Column Contributions

Column Contributions

“ Column Contributions
Number
Term of Splits SS Portion
rooms 3 202972301 I 07636
Istat 1 ssoe.73981 I 0.2072
crim 1 776279837 1 0.0292
zn 0 o 0.0000 Decision Tree
indus 0 0 0.0000
chas 0 0 0.0000
nox 0 0 0.0000
age 0 0 0.0000
distance 0 0 0.0000
ragial 0 0 0.0000
tax 0 0 0.0000
pt 0 0 0.0000
b 0 0 0.0000

http://www.jmp.com/support/help/Examples _of Partitioning_Methods.shtml




Evaluating Tree Performance

Fit Details
Measure
Entropy RSquare
Generalized RSquare
Mean -Log p
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CTA Using JMP




Case Scenario

You are the evaluator for a multi-site clinical
intervention designed to promote weight loss among
patients with diabetes

The intervention’s funder wants to know:

What factors predict weight loss at 3-month follow-
up?




Variables of Interest
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Next Steps

Experiment with different approaches for modeling the data.

Select the model that works best.

Decide on how to present the results, depending on your venue
and audience.




Limitations to Mention

If you can’t draw causal relationships from the data,
be sure to mention this!

Other variables not included in the model may also
impact your outcome variable




Group Exercise

In groups of 3-4, come up with a plan for explaining
the results of the CTA on your handout to a client
with limited statistical knowledge. Be sure to think

about:
How you would explain the method

How you would present the results
What conclusions you would draw
What limitations you would mention







For clients in a permanent supportive housing
program, what characteristics at intake assessment
predict housing retention after 1 year?



Methods




Sample Inclusion Criteria

1,388

Participants Enrolled as of June 30,
2015

1,284

Chronic Participants




Measures

Measure Description of Measure Variable Values
Outcome Variable
Housing This measure captures whether or not an individual retained housing after one Yes, No
Retention year of being housed in permanent supportive housing.
Predictors
Binary measures were created for each indicated gender (Woman, Man,
Gender Yes. No
Transgender) ’
Race Binary measures were created for each indicated race (White, Black, Asian, Yes, No
AKNA/ AI, NHPI, Other, Multiracial).
Age . . .
Participants were grouped into age categories Yes, No
Mental Health This measure captures whether or not a person has a diagnosed mental health ~ Yes, No
Diagnosis disorder.
Substance Abuse This measure capt.ures whether or not a person has a diagnosed with a Yes, No
. substance abuse disorder.
Disorder
This measure captures whether or not a person is a veteran, determined by a Yes, No
Veteran Status .
presence of DD-214 documentation.




Analytic Strategy

- HEE s e
« Examined frequencies of key variables.

» Conducted a classification tree analysis using JMP.

» A classification tree analysis is a data mining technique that identifies
what combination of factors (e.g. demographics, behavioral health
comorbidity) best differentiates between individuals based on a
categorical variable of interest, such as treatment attendance.

« 10-fold cross-validation was used to improve the predictive power of
the tree.

» Statistics (e.g. R? misclassification rate) were examined to
evaluate the performance of the final classification tree.



Results




Age Gender EthﬂlClty

P &

= Hispanic (n=39)

12-14 years (n=14) . 11%

15-16 years old (n=46) [ 37
17-18 years old (n=50) - 40%

19-20 years old (n=6) I 5%

e g:ifgnd above l 6% "Man (n=o8) = Woman (n=0) = Non-Hispanic (n=79)
Race (n=114) Number of Mental Health

| Diagnoses
wnie o=75) | o>
None (n=34) 27%
Black (n=15) [ 23% -

other (n=12) [ 12%

Two (n=11 . 9%
Multiracial (n=15) I 5% ( ) ()

American Indian/Alaska

Three (n=3) I 2%
Native (n=2)



Treatment Attendance

of people experiencing chronic homelessness

retained housing at 1 year follow-up.
78

26

20

Housed Not housed Institutionalized



Classification Tree Results

B I B
5 factors significantly impacted treatment attendance among referred participants:

Mental Health Substance Abuse
Veteran Status Age

Race

K-fold R Square

The misclassification rate is 0.18

10-Folded 0.23

Overall 0.37



Classification Tree Results

-

\_

NOT Under

Age of 40
55% likelihood

~N

J

Likelihood of retaining housing at 1-year follow up

NO Mental

Health
80% likelihood

Mental Health
20% likelihood

NOT Substance
Under Age Substance Abuse
of 40 Abuse 10% likelihood
90% 45% likelihood
likelihood
Not African African
American American l‘;g/)theltﬁrag Ve;g;an
55% 30% o HKEhoo likelihood

likelihood likelihood




Key Conclusions

* Chronically homeless participants who

, ,and are not a
veteran are the least likely (8% likelihood) to retain housing
after one year.

* Chronically homeless participants who do not have a mental
health diagnosis and are the most
likely (8% likelihood) to retain housing after one year.

e Others?



Limitations

* Organization’s data quality

* Other factors not included in the analysis could also impact

the likelihood of housing retention at follow-up

* Given the small sample size used in this analysis, caution
should be applied when generalizing the results of this

analysis to larger samples.



Resources for Continued Learning

JMP Website:
http:/ /www.jmp.com/support/help/Partition Models.shtml#129

6905

Lemon, S. C., Rov, |., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003).
Classification and regression tree analysis in public health: methodological
review and comparison with logistic regression. Annals of behavioral medicine,

26(3), 172-181.

Youtube videos
https:/ /www.youtube.com/watch?v=xj-OrrBKTSM



http://www.jmp.com/support/help/Partition_Models.shtml#1296905
https://www.youtube.com/watch?v=xj-Orr3KTSM

Thank you!

Feel free to reach out to us:

Meredith Philyaw
mphilyaw@med.umich.edu

Jennifer R. Lyons
jrnulty@umich.edu



Additional Slides




Comparing CTA and Regression

Classification Tree Analysis

More holistic view of what factors
influence whether or not an individual
attains a desired outcome

Easy to account for nested data

Results are presented in an user-
friendly format

Results can vary each time you run the
model

All right-hand side variables are
treated as independent variables

Logistic Regression

Shows the impact of each right-hand
side variable on the outcome variable
after adjusting for other variables in
the model

Multilevel modeling is required if you
have nested data

Interaction terms can be difficult to
interpret

Results are consistent each time you
run the model

You can theoretically differentiate
between your IV, confounders and
covariates




